Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading
نویسندگان
چکیده
The massive consumption of fossil fuels and associated environmental issues are leading to an increased interest in alternative resources such as biofuels. The renewable biofuels can be upgraded from bio-oils that are derived from biomass pyrolysis. Catalytic cracking and hydrodeoxygenation (HDO) are two of the most promising bio-oil upgrading processes for biofuel production. Heterogeneous catalysts are essential for upgrading bio-oil into hydrocarbon biofuel. Although advances have been achieved, the deactivation and regeneration of catalysts still remains a challenge. This review focuses on the current progress and challenges of heterogeneous catalyst application, deactivation, and regeneration. The technologies of catalysts deactivation, reduction, and regeneration for improving catalyst activity and stability are discussed. Some suggestions for future research including catalyst mechanism, catalyst development, process integration, and biomass modification for the production of hydrocarbon biofuels are provided.
منابع مشابه
Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Biofuels
To address the issues of greenhouse gas emissions associated with fossil fuels, vegetable oilseeds, especially non-food oilseeds, are used as an alternative fuel resource. Vegetable oil derived from these oilseeds can be upgraded into hydrocarbon biofuel. Catalytic cracking and hydroprocessing are two of the most promising pathways for converting vegetable oil to hydrocarbon biofuel. Heterogene...
متن کاملHeterogeneous Catalyst Deactivation and Regeneration: A Review
Deactivation of heterogeneous catalysts is a ubiquitous problem that causes loss of catalytic rate with time. This review on deactivation and regeneration of heterogeneous catalysts classifies deactivation by type (chemical, thermal, and mechanical) and by mechanism (poisoning, fouling, thermal degradation, vapor formation, vapor-solid and solid-solid reactions, and attrition/crushing). The key...
متن کاملDeactivation Behavior of Carbon Nanotubes Supported Cobalt Catalysts in Fischer-Tropsch Synthesis
The effects of electronic properties of inner and outer surfaces of Carbon Nano Tubes (CNTs) on the deactivation of cobalt Fischer-Tropsch (FT) catalysts were studied. The comparative characterization of the fresh and used catalysts by TEM, XRD, TPR, BET and H2 chemisorption showed that cobalt re-oxidation, cobalt-support interactions and sintering are the main sources o...
متن کاملAccelerated Deactivation and Activity Recovery Studies of Ruthenium and Rhenium Promoted Cobalt Catalysts in Fischer-Tropsch Synthesis
Accelerated deactivation of Co/Al2O3 catalysts in Fischer-Tropsch synthesis and the effect of Re and Ru as the catalytic promoters are reported. 15wt% Co/Al2O3 catalyst and 1wt% Ru and 1.4wt% Re promoted cobalt catalysts have been formulated and extensively characterized. The deactivation of the unpromoted cobalt catalyst and those promoted with ...
متن کاملUpgrading of Bio-oil Molecular Distillation Fraction with Solid Acid Catalyst
Molecular distillation technology has been adopted to obtain a bio-oil fraction rich in carboxylic acids and ketones. This unique bio-oil fraction was then upgraded with a La-promoted solid acid catalyst. Three washing pretreatments were used to prepare catalysts A, B, and C, with the intention of reducing the amounts of residual sulfuric acid. Model reactions were used to estimate their cataly...
متن کامل